
Transformer
https://github.com/xiahouzuoxin

Contents

1. What is attention and why we need?

2. How to convert raw text to self-attention inputs?

3. How to build a model with self-attention layers?

4. LLM Optimizations – LoRA, KV Cache, Deepseek etc.

https://github.com/xiahouzuoxin

What is attention and why we need?

Why we need attention

？

Issues with RNNs/Seq2Seq:

- Temporal Dependency.They cannot be parallelized, which is

time-consuming.

- Vanishing Gradient over time.The influence of earlier time

steps diminishes as the time gap increases.

CNN is all you need

https://arxiv.org/pdf/1712.09662.pdf

Attention is all you need

https://arxiv.org/pdf/1712.09662.pdf

https://arxiv.org/pdf/1712.09662.pdf
https://arxiv.org/pdf/1712.09662.pdf

Self Attention Layer

Attention Weight Sum

✓ By the same way as getting O1, we can get O2, O3, O4。

✓ Key Points：
1. All text computations can be performed independently and in parallel — the calculation

of O₂ does not depend on O₁.
2. For each word, all other words contribute to its output — with the contribution strength

determined by attention weights — there’s no temporal forgetting issue.

Self Attention Layer

𝑑𝑘：

The QK^T product is scaled to avoid softmax

saturation for improved training stability.

Linear layer for mapping concat result to the input shape

to avoid dimension increasing disaster.

Causal Self-Attention

In tasks like autoregressive text generation, where words are produced from left to right, the generation of the current

word must not depend on future words that have not yet been generated.

To enforce this, Causal Self-Attention is used, which restricts each position to attend only to previous positions in

the sequence by using only the keys (K) and values (V) of the preceding tokens.

Attention Attention Attention Attention Self-Attention Layer

I like you very

like you very much

nanoGPT: https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L68

Deepseek V3: https://github.com/deepseek-ai/DeepSeek-V3/blob/9b4e9788e4a3a731f7567338ed15d3ec549ce03b/inference/model.py#L592

Implement in pytorch by Tensor.masked_fill_

https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L68
https://github.com/deepseek-ai/DeepSeek-V3/blob/9b4e9788e4a3a731f7567338ed15d3ec549ce03b/inference/model.py#L592

Multi-Head Attention

https://github.com/xiahouzuoxin/zxlearn/blob/6589952c15ab6b8834d64b1e048373b573e193f5/transformer/transformer.py#L26

https://web.stanford.edu/~jurafsky/slp3/8.pdf

实现上，为了利用提高并行计算效率：
1. 先按d维度计算QKV，然后拆成MultiHead；
2. 甚至在nanoGPT中，仅用了一个nn.Linear，拆分得到QKV

GPT中也有对Attention Weights使用了Dropout

原始的Transformer Paper使用了8个Head

https://github.com/xiahouzuoxin/zxlearn/blob/6589952c15ab6b8834d64b1e048373b573e193f5/transformer/transformer.py#L26
https://web.stanford.edu/~jurafsky/slp3/8.pdf

Self Attention In nanoGPT

For projecting to QKV

Speed up attention calculation by Flash Attention, we may talk about it later

Causal attention

Apply dropout on normalized attention weight

Multi-Head Attention

Output projection, exist in original Transformer for mapping

multi-head attention concat result to the same shape as input

https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L29

https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L29

Revisit: why we need attention

Self Attention Layer

Issues with RNNs/Seq2Seq:

- Temporal Dependency. They cannot be parallelized, which is

time-consuming.

- Vanishing Gradient over time. The influence of earlier time

steps diminishes as the time gap increases.

Self-Attention Layer:

- No sequential dependency. It is fully parallelizable and GPU-

friendly.

- No global vanishing issues. Each query can interact with all keys

across the entire sequence via dot products.

- Drawback: Lacks positional information.

Convert Raw Text to Self-Attention Inputs?

Tokenizer & Positional Encoding

Tokenizer

How to feed our raw texts to the self attention layer?

Language model reads tokens, not words.

Raw text

Tokens

encode decode

One of the most common tokenizer is BPE (Byte Pair
Encoding):
- BPE iteratively merges the most frequent pairs of

symbols in a corpus to form subword units that
balance vocabulary size and text coverage.

- Ref code:
https://github.com/karpathy/minbpe/blob/master/
minbpe/regex.py

- A small BPE merge operator from
https://arxiv.org/pdf/1508.07909

Tokenizer

Iter count the pair frequencies

and merge

https://tiktokenizer.vercel.app/?model=gpt-4o

https://github.com/karpathy/minbpe/blob/master/minbpe/regex.py
https://github.com/karpathy/minbpe/blob/master/minbpe/regex.py
https://arxiv.org/pdf/1508.07909
https://tiktokenizer.vercel.app/?model=gpt-4o

Positional Encoding

There’s different meaning of “love you” and “you love”, though it just swapped the position of the text.

Therefore, the order of the text is still important but not considered in self attention layer. How to solve this?

Self Attention Layer

[1, 0, 0, 0] Token

Look Up Emb Table

[0, 0, 0, 1] Token

…
Look Up Embed Table

Positional Encoding

Text Embedding：wte = nn.Embedding(config.vocab_size, config.n_embd)

Pos Embedding：wpe = nn.Embedding(config.block_size, config.n_embd)

vocab_size token词表大小
block_size 模型最大处理序列长度

Add Embeddings：a_i = wte(TextToken) + wpe(PositionalEncoding)

Some models (nanoGPT/GPT2), they apply dropout after the embeddings like in DNN

a_i = F.dropout(a_i)

Why adding the positional embedding, not concat?

https://www.zhihu.com/question/485476372

Reason 1: Adding in embedding equal to the concat on one-hot encoding, as below equation where W is the

embedding transform matrix

Reason 2: There are also some models adopted concat, but it doubled the dimension of self-attention layer but little

improvement

https://www.zhihu.com/question/485476372

Sinusoidal Positional Encoding

Positional encoding by one-hot has 2 issues:

- One-hot encoding cannot scalable when the inference sequence length > training length

- One-hot encoding is orthogonal (正交的), model not able to learn the relative distances of token pairs

Sinusoidal Positional Encoding

PE_{pos+k} can be represented as a linear function of PE_pos,

which gives the possibility the model can learnt from it

Figure is generated by ChatGPT

RoPE - Rotary Position Embedding

https://arxiv.org/pdf/2104.09864

RoPE不再把“位置”直接加到 embedding 上，而是通过一个旋转变
换（rotation），把位置编码“嵌入”到 attention 的计算中。

https://github.com/deepseek-ai/DeepSeek-V3/blob/9b4e9788e4a3a731f7567338ed15d3ec549ce03b/inference/model.py#L378

复数乘法

旋转参数Theta可以预计算好

注意，RoPE只需要对Q和K进行旋转Encoding：

1. 因为RoPE 通过对 Q 和 K 的旋转，让注意力分数变
成位置差的函数

2. 但是V是内容本身信息，不需要被扭曲

https://arxiv.org/pdf/2104.09864
https://github.com/deepseek-ai/DeepSeek-V3/blob/9b4e9788e4a3a731f7567338ed15d3ec549ce03b/inference/model.py#L378

How to build a model with self-attention layers?

That is Transformer

Transformer Overview

- GPT using the decoder structure, BERT
using the encoder structure

- Multi-head attention can be parallel
execution, thus can be optimized when
resource enough, while the decoder
cannot be parallel execution because it
relies on the previous output words. It
means that the run time of GPT mainly
limited to the output length when
compute resource is enough

- Output Linear (LMHead) may shared the
parameters with the Embedding

Assume DICT={0,1,2,3,4,5,6,7,8,9,0,S}, where S means SPACE

Now, we have the Self Attention Layer, and we have our input texts are tokenized
and processed as embeddings. How to build a scalable model?

Transformer - Resnet View

Vanilla Transformer Block

Transformer Block in Latest GPTs

https://web.stanford.edu/~jurafsky/slp3/8.pdf

Pre-norm is more stable and used on

most of the latest LLMs

https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L126

Pre-norm require a final norm for output

Pre-norm and residual implementation

layer norm is not applied to an entire

transformer layer, but just to the embedding

vector of each token independent.

Resnet View

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L126

Transformer – Feed Forward

Transformer Block in Latest GPTs

https://web.stanford.edu/~jurafsky/slp3/8.pdf

GPT3 – GELU

DeepSeek V3 - SILU

Linear

Linear &

Dropout

FFN output the Same

shape as the input

RELU/GELU/SILU/..

It’s common to make the hidden

dim larger than model

dimension. Both the Vanilla

transformer and nanoGPT, are

4x of input dim.

Dropout is a common op in FFN

https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L78

Why not all attention layers, why we need FFN?

- There are no non-linear transformer in attention

layers. You may say, softmax not non-linear op? But

softmax in attention is just for weight normalization, not

applied on Values directly.

- FFN has the memory function. If we count the

parameters, FFN account for around 2/3 of the total

parameters of Transformer. For example, if model d =

512, then parameters of FFN=512*(512*4)*2, while

parameters of attention layer in Original GPT =

512*512*3

Like LayerNorm, the FFN also applied on each token

independent while shared parameters, not related to

sequence length,

d=512

d=512*4

d=512

d=512*4

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://github.com/karpathy/nanoGPT/blob/93a43d9a5c22450bbf06e78da2cb6eeef084b717/model.py#L78

BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

https://arxiv.org/abs/1810.04805

Key points of BERT：
1. Keep the same structure as Transformer’s Encoder

2. Large text data size

3. Unsupervised pre-training and fine-tuning on down-steam tasks, unsupervised tasks such as

- MLM：完型填空
- NSP：预测下一句

BERT is the Encoder part of Transformer

https://arxiv.org/abs/1810.04805

GPT

GPT is the Decoder part of Transformer

Unwrapped training process

https://web.stanford.edu/~jurafsky/slp3/8.pdf

More about sampling please ref:

https://xiahouzuoxin.github.io/posts/控制模型创造力的艺术llm输出策略解析/

https://web.stanford.edu/~jurafsky/slp3/8.pdf
https://xiahouzuoxin.github.io/posts/控制模型创造力的艺术llm输出策略解析/

Calculate GPT Model Size

GPT Block Parameter Volume (ignored bias,norm etc)

Multi-Head Attention QKV together 3 * d^2

Output Projection After Every Attention Layer d^2

FFN The most common case, assume expanding input dim by 4x in

FFN, 2 Linear layers together

2 * (1*d) * (4*d) = 8 * d^2

Embeddings Text token embedding d * V, pos embedding d * L

Output LM Head Shared with embedding

Total 12 * d^2 * N + d * (V+L)

d – model dimension (embedding dim)

V – vocabulary size

L – block size (sequence length)

N – Number of transformer block layers

Example:

GPT-3, d=12288, N=96, V=50K, L=1024

Model Size = 12 * 12288^2 * 96 + 12288 * (50K+1024) = 174573158400 ~ 175 Billion

Multimodal

The Llama 3 Herd of Models: https://arxiv.org/pdf/2407.21783

How to learn when there’re

image/video/speech inputs?

Cross Attention

Where

Q: text embedding

K,V: multimodal embedding

https://arxiv.org/pdf/2407.21783

LLM Optimizations

LoRA

Low-Rank Adaptation, or LoRA

- Freezes the pre trained model weights and

injects trainable rank decomposition matrices

into each layer of the Transformer architecture

- Greatly reducing the number of trainable

parameters for downstream tasks

Paper: https://arxiv.org/pdf/2106.09685

Only B and A is trained with a very small dimension r << d.

Computing complexity from O(d^2) to O(2dr), it reduce a lot when r << d.

https://github.com/microsoft/LoRA/blob/c4593f060e6a368d7bb5af5273b8e42810cdef90/loralib/layers.py#L149

Update the model by equation Where W0 is frozen when training

Easy way to fine-tune an LLM?

- Fine-tune on raw LLM parameters for downstream tasks is hard and cost inefficient

- Easy to over-fitting with small task-specific data set

https://arxiv.org/pdf/2106.09685
https://github.com/microsoft/LoRA/blob/c4593f060e6a368d7bb5af5273b8e42810cdef90/loralib/layers.py#L149

LARGE

KV Cache

https://cloudthrill.ca/kv_cache-explained

- There are many redundant calculations for Keys and Values

during GPT inference. The computed K/V pairs can be cached

for generating the next token. This is essentially a space–time

tradeoff, as it reduces computation at the cost of higher memory

usage. KV Cache mainly used in decoder, as the encoder is

computed in parallel.

Peak cached memory =

BatchSize * (InputLen+OutputLen) *

EmbDim * Layers * 2 * sizeof(datatype)

https://cloudthrill.ca/kv_cache-explained

KV Cache Optimize – Compression

https://github.com/InternLM/lmdeploy/bl

ob/main/docs/en/quantization/kv_quant.

md shows that even keep only 50%

memory by INT8 KV quantization, LLM

can still keep 98%+ performance

H2O: Heavy-Hitter Oracle for Efficient

Generative Inference of Large Language

Models reduced the KV cache memory by

90% with little accuracy drop, by using static

sparsity + H2 eviction algorithm

Issue: KV Cache eat lots of memories, how to reduce the KV cache

memories while the LLM performance not drop a lot in inference?

https://github.com/InternLM/lmdeploy/blob/main/docs/en/quantization/kv_quant.md
https://github.com/InternLM/lmdeploy/blob/main/docs/en/quantization/kv_quant.md
https://github.com/InternLM/lmdeploy/blob/main/docs/en/quantization/kv_quant.md
https://arxiv.org/pdf/2306.14048
https://arxiv.org/pdf/2306.14048
https://arxiv.org/pdf/2306.14048

KV Cache Optimize - MHA/MQA/GQA

Issue: KV Cache costs more memories when in multi-head attention (MHA) situation

GQA:Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints. https://arxiv.org/pdf/2305.13245

Multi-query Attention (MQA)

Multiple heads share the single Key

and Value. Given a pre-trained MHA

model, we can continue a small steps

pre-training under the mean pooling

of all K/Vs structure. Then just need

to cached the pooled K/Vs when

inference.
Performance worse

Grouped-query Attention (GQA)
Split multi-heads to multiple groups,

and implement MAQ in each group

https://arxiv.org/pdf/2305.13245

Flash Attention

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention

FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness

- Standard attention stores, reads,

and writes keys, queries, and values

in High Bandwidth Memory (HBM),

but HBM access is relatively slow.

- FlashAttention significantly

accelerates attention computation

by reorganizing the operations to

minimize HBM reads and writes.

- FlashAttention can be applied in

both training and inference stages.

And it’s applied on almost all the

latest LLMs

https://huggingface.co/docs/text-generation-inference/en/conceptual/flash_attention
https://arxiv.org/abs/2205.14135

Paged Attention

Efficient Memory Management for Large Language Model Serving with PagedAttention

https://github.com/vllm-project/vllm 基于Paged Attention实现的LLM推理引擎

https://arxiv.org/pdf/2309.06180
https://github.com/vllm-project/vllm

Deepseek – MoE & MLA

Deepseek V3: https://arxiv.org/abs/2412.19437

MLA 作为对MQA/GQA的进一步改进，MLA也为了优化KV Cache设计的，
通过low rank的latent vector，经过一个Projection得到K/V。最终部署
的时候只要Cache latent vector就行（如下蓝色的参数），大大减小了
KV Cache的内存开销

MoE

RMSNorm 不同于标准的Transformer采用LayerNorm，Deepseek为了追求
计算上更轻，采用的RMSNorm归一化

作为对原FFN的改进，Deepseek采用了MOE，也是基于MOE推理小考虑的。MoE能在训练的时候加大模型参数容量，提升LLM效果，但是在推理的时候却只需
要激活部分Experts的参数，而不损失推理速度。

为什么MoE能提升效果？
1. 相同推理计算的情况下，训练参数的容量更大（LLM中Scaling Raw决定模型大小与效果成正比）
2. MoE本身也有类似Model Ensemble的效果（很早其实在推荐多目标场景中就有被使用）

MoE的Experts选择是每个token不一样吗？
1. 是的。MoE包括Router/Gating（决定选哪些Experts）和 Experts加权计算，Router的计算跟token有关

https://arxiv.org/abs/2412.19437

	幻灯片 1: Transformer
	幻灯片 2: What is attention and why we need?
	幻灯片 3: Why we need attention
	幻灯片 4: Self Attention Layer
	幻灯片 5: Self Attention Layer
	幻灯片 6: Causal Self-Attention
	幻灯片 7: Multi-Head Attention
	幻灯片 8: Self Attention In nanoGPT
	幻灯片 9: Revisit: why we need attention
	幻灯片 10: Convert Raw Text to Self-Attention Inputs? Tokenizer & Positional Encoding
	幻灯片 11: Tokenizer
	幻灯片 12: Positional Encoding
	幻灯片 13: Sinusoidal Positional Encoding
	幻灯片 14: RoPE - Rotary Position Embedding
	幻灯片 15: How to build a model with self-attention layers? That is Transformer
	幻灯片 16: Transformer Overview
	幻灯片 17: Transformer - Resnet View
	幻灯片 18: Transformer – Feed Forward
	幻灯片 19: BERT
	幻灯片 20: GPT
	幻灯片 21: Calculate GPT Model Size
	幻灯片 22: Multimodal
	幻灯片 23: LLM Optimizations
	幻灯片 24: LoRA
	幻灯片 25: KV Cache
	幻灯片 26: KV Cache Optimize – Compression
	幻灯片 27: KV Cache Optimize - MHA/MQA/GQA
	幻灯片 28: Flash Attention
	幻灯片 29: Paged Attention
	幻灯片 30: Deepseek – MoE & MLA

